Lecture 20: Solution to Solar \(\nu \) Problem

No class Oct 30
Friday: Rex Tayloe on LSND
Monday: Mark Messier on Atmospheric \(\nu \)

Cl experiment sees about \(\frac{1}{3} \) of Solar model flux.

We want some but not all of \(\nu \) Flux to oscillate

1. The resonance density is neutrino energy dependent.

\[
P_e^0 = \frac{\Delta m^2}{2 \pi^2 G_f E} \cos 2E
\]

Choose \(\Delta m^2 \) so large that \(P_e^0 \) is greater than central density of \(\alpha \) sun for low \(E \) but not for high \(E \). Thus low \(E \) \(\nu \) don’t oscillate away because they never pass through resonance.

\[
P_e^0 = 1.5 \times 10^3 \text{ particles}\text{ cm}^{-3}\text{ g}^{-1} \frac{6.02 \times 10^{23}}{g} \left[197.33 \text{ MeV} \times 10^{-13} \text{ cm} \right]^3 \text{ cm}^{-3}
\]

\[
P_e^0 = 6.9 \times 10^{-7} \text{ MeV}^3
\]
Assume \(\cos 2\theta_v = 1 \)

\[
E_{\nu} = \left(\frac{\Delta m^2}{\text{MeV}^2} \right)^{-1} \left(\frac{10^{-12} \text{ev}^2/\text{MeV}^2}{1.16 \times 10^{-11} \text{MeV}^2} \right) \frac{1}{6.9 \times 10^{-7} \text{MeV}^3} \]

\[
E_\nu = 4.4 \times 10^4 \text{ MeV} \frac{\Delta m^2}{\text{MeV}^2}
\]

If \(\Delta m^2 = 10^{-4} \text{ ev}^2 \) than a 4.4 MeV \(\nu_\mu \) just reaches resonace in center of sun. If \(E_\nu \ll 4.4 \text{ MeV} \) resonace density \(\gg \rho_0 \) and neutrino does not oscillate appreciably.

2. Alternatively, \(\Delta m^2 < 10^{-4} \text{ ev}^2 \) so all neutrinos reach resonace somewhere in sun. However, mixing angle is so small that transition is only partially adiabatic and \(\text{P}_{0 \nu} > 0 \)

3. Third alternative is that vacuum mixing angle is large but nonmaximal thus \(\cos 2\theta_v < 1 \) survival probability is

\[
\text{P}_{\nu_e \rightarrow \nu_e} = \frac{1}{2} + \frac{1}{2} \cos 2\theta_v \cos 2\theta_i
\]

\text{If } \cos 2\theta_i = -1 \text{ if } \cos 2\theta_v < 1 \text{ then } \text{P}_{\nu_e \rightarrow \nu_e} \neq 0.
CL experiment can be explained by triangular shaped region.

Add constraints from Ga low threshold and Kamiokande. Only two allowed regions: small mixing angle (SMA) and large mixing angle (LMA) MSW solutions.

Note 1) has large survival for low \(E \nu \) while 2) has large survival for high \(E \nu \) and 3) \(\theta \) has survival prob. about energy independent. \(P_{\nu_e \rightarrow \nu_e} = \frac{1}{2} - \frac{1}{2} \cos 2 \theta \)

Finally SNO greatly favors LMA over SMA.

All present solar \(\nu \) experiments are well described by LMA

\[\Delta m^2 = 10^{-4} \text{ eV}^2 \]

\[\theta_{12} \approx 30^\circ \]