Physics P621

Relativistic Quantum Field Theory

Indiana University

Spring 2008




Chuck Horowitz                                             

Swain West 233                                              

Email: horowit at                                   

Phone  855-0303



IUCF 1215

Phone  855-2959


Office hours:

       TR  2:15 – 3:15

       W   3:00 – 3:30

       and by appointment


Class lectures:

       TR  12:20 – 2:15

       Swain West  103 


Course Web site:



       M. Peskin and R. Schroeder, An Intro. To Quantum Field Theory

       Errata to text:


Short description:

      Introduction to quantum field theory, symmetries, Feynman diagrams, quantum electrodynamics, and renormalization.


Prerequisite:  P512 Quantum Mechanics II



       Homework           70%

       Take home final   30%


Old Homework Problem Sets

P621  Relativistic Quantum Field Theory I


This course will follow Part I of Peskin and Schroeder on Feyman Diagrams and Quantum Electrodynamics.


I.       Introduction:  Pair production in e+ e- annihilation


II.      The Klein-Gordon Field

                   Classical Field Theory

                   Fields as harmonic oscillators

                   Klein-Gordon field in space-time


III.    The Dirac Field

                   Lorentz invariance in wave equations

                   The Dirac equation

                   Free particle solutions

                   Dirac Matrices

                   Quantization of Dirac field



IV.    Interacting Fields and Feynman Diagrams

                   Perturbation theory

                   Wick’s theorem

                   Feynman diagrams

                   Cross sections and S matrix

                   Feynman rules


V.     Elementary Processes of Quantum Electrodynamics

                   e+ e-  ->  μ+ μ-

                   Vector meson production and decay

                   Crossing symmetry

                   Compton Scattering


P622 Relativistic Quantum Field Theory II (Not offered in 2008, Offered Spring 2009)

This class is a continuation of P621.  The text is “An Introduction to Quantum Field Theory” by M. E. Peskin and D. V. Schroeder.  We will cover many topics from the following chapters of Peskin & Schroeder:  7, 8, 9, 10, 12, 14, 15, 16 and 17.   Note:  in general we will not cover the advanced topics that are marked with an  *  in the table of contents of Peskin & Schroeder.

I.    Radiative Corrections

II.    Renormalization
        A)    Functional Methods
        B)    Systematics of Renormalization
        C)    Renormalization Group

III.    Non-Abelian Guage Theories   
        A)    Non-Abelian Guage Invariance
        B)    Quantization of Non-Abelian Theories
        C)    QCD

Other Useful Reference Material:

         V.B. Berestetskii, et al., Quantum Electrodynamics [on reserve].

         J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics [on reserve].

         J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields [on reserve].

         L. Brown, Quantum Field Theory [on reserve].

         F. Gross, Relativistic Quantum Mechanics and Field Theory [on reserve].

         B. Hatfield, Quantum Field Theory of Point Particles and Strings [on reserve].

         C. Itzykson and J. Zuber, Quantum Field Theory [on reserve].

         M. Kaku, Quantum Field Theory:  A Modern Introduction [on reserve].

         P. Ramond, Field Theory:  A Modern Primer [on reserve].

         L. Ryder, Quantum Field Theory  [on reserve].

         J.J. Sakurai, Advanced Quantum Mechanics

         W. Siegel, Fields, available online

         S. Weinberg, Quantum Theory of Fields, Vol.1 & 2  [on reserve].

         J. Zinn-Justin, Quantum Field Theory and Critical Phenomena.