Lecture 14: Small Oscillations

For static solution all generalized forces vanish:

$$Q_0 = -\frac{\partial V}{\partial \theta_0} \bigg|_{\theta_0 = \theta_0^0} = 0$$

Expand coordinates and Lagrangian about equilibrium $$\theta_0^0$$:

$$\theta_0 = \theta_0^0 + \eta_0$$

With $$\eta_0$$ small:

$$T = \frac{1}{2} \sum \limits_{i} m_i \dot{\eta}_i \eta_i$$

$$m_{i\chi} = \sum \limits_{i} m_i \frac{\partial x_i}{\partial \theta_0^0} \frac{\partial x_{i\chi}}{\partial \theta_0^0} = m \lambda_{i\chi}$$

$$m_{i\chi}$$ is a real symmetric matrix

$$V = V(\theta_0^0 + \eta_0^1, \ldots, \theta_0^0 + \eta_0^n)$$

$$= V(\eta_0^1, \ldots, \eta_0^n) + \sum \limits_{i} \eta_0^i \frac{\partial V}{\partial \theta_0^0} \bigg|_{\theta_0^0}$$

$$+ \frac{1}{2} \sum \limits_{i} \eta_0^i \eta_0^i \frac{\partial^2 V}{\partial \theta_0^0 \partial \theta_0^0} \bigg|_{\theta_0^0}$$
At equilibrium \(\partial V/\partial q_k = 0 \)

\[V = V_0 + \frac{1}{2} \sum_{k \neq l} V_{kl} \eta_k \eta_l \]

\[V_{kl} = \frac{\partial^2 V}{\partial q_k \partial q_l} \]

\[V_{kl} = V_{lk} \quad \text{real matrix} \]

\[L = T - V = \frac{1}{2} \sum_{k \neq l} \left(m \dot{\eta}_k \dot{\eta}_l - V_k \eta_k \eta_l \right) + V_0 \]

Equations of motion \[\frac{d^2}{dt^2} \eta_k + V_{kk} \eta_k = 0 \]

Note: Equations of motion are good to first order in \(\eta \) while to get them needed to calculate \(L \) to 2nd order in \(\eta \).

Linear matrix equation. In general

\[\eta' = \eta - \eta_0 e^{-t} \]

Consider one degree of freedom

\[m \ddot{\eta} + V \eta = 0 \]

\[\ddot{\eta} = -\frac{V}{m} \eta \]

\[\eta = \Re \eta_0 e^{i \omega t} \]

\[\omega = \sqrt{\frac{V}{m}} \]

So for coupled problem guess that all coordinates oscillate with same frequency \(\omega \).
\[\eta_{6t} = \Re \eta_6^* e^{i \omega t} \quad \eta_6 = -\omega^2 \eta_6 \]

Here, \(\eta_6^* \) is a constant (time independent) vector which contains information on the amplitude and relative phase of the different oscillators.

(4) \[\sum (V_\Omega x - \omega^2 m_\Omega x) \eta_6^* = 0 \]

This only has nontrivial solutions if

\[\det \left| V_\Omega x - \omega^2 m_\Omega x \right| = 0 \]

This gives an \(n \)th order polynomial in \(\omega^2 \)

Prove \(\omega^2 \) is real

Multiply (4) by \(\eta_6 \)

\[\sum \eta_6^* (V_\Omega x - \omega^2 m_\Omega x) \eta_6 = 0 \]

Solve for \(\omega^2 \)

\[\omega^2 = \sum \frac{V_\Omega x \eta_6^* \eta_6}{m_\Omega x} \]

Take complex conjugate

\[(\omega^2)^* = \sum \frac{V_\Omega x \eta_6^* \eta_6^*}{m_\Omega x} \]

but

\[V_\Omega x = V_\Omega x = V_\Omega \]

\[m_\Omega x = m_\Omega \]

\[m_\Omega^* = m_\Omega \]
\((\omega^2)^* \leq \sum \eta_0 \eta_x \lambda / \sum \eta_0 \eta_x \lambda \)

Now let \(\lambda \geq 6 \), \(\lambda \to \lambda \)

\[= \sum \eta_0 \eta_x \lambda \eta_0^* / \sum \omega_0 \eta_0 \eta_0^* \]

\[= \omega^2 \]

Therefore \(\omega^2 \) is real.

Stable if all \(\omega^2 > 0 \)

Unstable if any \(\omega^2 < 0 \)