Last time: bead on a rotating hoop

\[x = a \cos(wt + \cos(wt + \phi)) \]
\[y = a \sin(wt + \sin(wt + \phi)) \]
\[V = 0 \]
\[T = \frac{1}{2} m (x^2 + y^2) \]

Always start with \[T = \frac{1}{2} m (x^2 + y^2) \]
\[\dot{x} = -a \left[\cos(wt + \phi) \sin(wt + \phi) \right] \]
\[T = L = \frac{1}{2} m a^2 \left[w^2 + (w + \dot{\phi})^2 + 2w (w + \dot{\phi}) \cos \phi \right] \]
\[\frac{dL}{d\phi} = m a^2 \left[(w + \dot{\phi}) + w \cos \phi \right] \]
\[\frac{d}{dt} \frac{dL}{d\phi} = m a^2 \left[\ddot{\phi} - w \sin \phi \dot{\phi} \right] \]

\[\frac{dL}{d\phi} = -ma^2 w (w + \dot{\phi}) \sin \phi \]
\[ma^2 \left[\ddot{\phi} - w \sin \phi \dot{\phi} + w^2 \sin \phi + w \dot{\phi} \sin \phi \right] = 0 \]
\[\ddot{\phi} = -w^2 \sin \phi \]

Pendulum equation \[\frac{g}{L} \rightarrow w^2 \]
Calculus of Variations

Redrive Lagrange's equations using Hamilton's Principle → Minimize Action

First introduce calculus of variations as a tool to minimize action.

Example: Brachistochrone Problem

Distance along curve $= \int \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{1}{2}} dx$

Velocity $\frac{1}{2} mv^2 = mgy \implies v = \sqrt{2gy}$

$t_{12} = \int_{1}^{2} \left[\frac{1 + y'^2}{2gy} \right]^{\frac{1}{2}} dx$

In general have a functional $I = I[y(x), y'(x)]$

Minimize I_{12}

$I = \int_{x_1}^{x_2} \phi [y(x), y'(x), x] dx$

For our problem $\phi = \left[\frac{1 + y'^2}{2gy} \right]^{\frac{1}{2}}$
Consider variation
\[y(x) \rightarrow y^*(x) = y(x) + \delta y(x) \]
With boundary conditions
\[\delta y(x_1) = \delta y(x_2) = 0 \]
Since we know the end points of wire
\[y'(x) = y'(x) + \delta y'(x) \]
So \[I = \int_{x_1}^{x_2} \phi \left(y, y', x \right) \, dx - \int_{y_1}^{y_2} \phi \left(y, y', x \right) \, dy \]
Taylor expand
\[\phi \left(y, y', x \right) \approx \phi \left(y, y', x \right) + \frac{\partial \phi}{\partial y} \delta y + \frac{\partial \phi}{\partial y'} \delta y' \]
So \[I = \int_{x_1}^{x_2} \left[\frac{\partial \phi}{\partial y} \delta y + \frac{\partial \phi}{\partial y'} \frac{dy}{dx} \delta y' \right] \, dx \]
What we mean by \(\delta y' \)
So \[I = 0 \] for minimum path.
Integrate 2nd term by parts
\[\int_{x_1}^{x_2} \frac{\partial \phi}{\partial y'} \frac{dy}{dx} \delta y' \, dx = \frac{\partial \phi}{\partial y'} \left. \delta y' \right|_{x_1}^{x_2} - \int_{x_1}^{x_2} \frac{d}{dx} \left[\frac{\partial \phi}{\partial y'} \right] \, dx \]
but boundary conditions
\[\delta y(x_1) = \delta y(x_2) = 0 \]
\[S_I = \int_a^b x^2 \left[\frac{\partial \Phi}{\partial y} - \frac{\partial}{\partial x} \frac{\partial \Phi}{\partial y} \right] \, dx \, dy = 0 \]

For: \(\Phi \). Int. to require
\[\frac{d}{dx} \left[\frac{\partial \Phi}{\partial y} \right] - \frac{\partial \Phi}{\partial y} = 0 \]

to minimize \(I \)

Hamilton's Principle

LaGrangie\'s equations of motion minimize the action
\[A = \int_{t_1}^{t_2} dt \left[L \left[q_i(t), \dot{q}_i(t), t \right] \right] \]

\[S = \int_{t_1}^{t_2} dt \left[L \left[q_i(t), \dot{q}_i(t), t \right] \right] = 0 \]

Taylor expand
\[= \int_{t_1}^{t_2} dt \sum_{n=1}^{\infty} \frac{d^n}{dt^n} L \left[q_i(t), \dot{q}_i(t), t \right] \]

Integrate and term by parts \(S q_i = \int \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) \, dt \)

B.C. \(q_i(t_1) = q_i(t_2) = 0 \)

\[0 = \int_{t_1}^{t_2} dt \left[\frac{\partial L}{\partial \dot{q}_i} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) \right] \, dt \]

If, all \(\dot{q}_i \) are independent then
\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0
\]

\[\Rightarrow \text{Lagrange equations}\]

If some of the \(q_i \) are not independent because of holonomic constraints

\[F_j(q_1, \ldots, q_n; t) = c_j, \quad j = 1, \ldots, k\]

1. Could choose any set of \(n-k \) independent coordinates and for these

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0\]

2. Instead include constraints with Lagrange multipliers

\[\sum_{j=1}^{k} \lambda_j \frac{\partial F_j}{\partial q_i} = 0, \quad j = 1, \ldots, k\]

\[c = \sum_{i=1}^{n} \left(\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial}{\partial t} \frac{\partial L}{\partial \dot{q}_i} \right) + \sum_{j=1}^{k} \lambda_j \frac{\partial F_j}{\partial q_i} \left. \right|_{t_i, q_i} \]

and \[\sum_{j=1}^{k} \lambda_j \frac{\partial F_j}{\partial q_i} \] into action and choose \(\lambda_j \) so that \(F_j = 0 \)

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = \sum_{j=1}^{k} \lambda_j \frac{\partial F_j}{\partial q_i}, \quad i = 1, \ldots, n\]

\[F_j(q_1, \ldots, q_n; t) = c_j, \quad j = 1, \ldots, k\]

Set of \(n+k \) equations in \(n+k \) unknowns