Lec 38 Nearly Circular Membrane

Expand b.c. in Fourier series

\[R(\psi) = \alpha \left[1 + \sum_{p=1}^{\infty} \left(\varepsilon_p \cos p\psi + \varepsilon_p \sin p\psi \right) \right] \]

\[\Omega \left[\nabla^2 + k^2 \right] \rho (r, \psi) = 0 \]

\[\rho (r = R(\psi), \psi) = 0 \]

Chose origin of circle

\[\varepsilon_i = \varepsilon_{ij} = 0 \quad < R > = a \]

Area of Membrane

\[A = \frac{2\pi}{\int_0^{2\pi} \frac{R^2(\psi)}{2} \cos \psi \, d\psi} \]

\[= \frac{2\pi}{\int_0^{2\pi} \left(1 + 2 \sum_{p=1}^{\infty} (\varepsilon_p \cos p\psi + \varepsilon_p \sin p\psi) + O(\varepsilon^2) \right) \frac{R^2(\psi)}{2} \cos \psi \, d\psi} \]

\[A = \pi a^2 + O(\varepsilon^2) \]

Expand general solution of (A) in solution for a circular membrane. These don't satisfy our b.c. but are a complete set

\[\rho (r, \psi) = \sum_{M=0}^{\infty} J_1(kr) (A_m \cos m\psi + B_m \sin m\psi) \]

Chose \(k, A_m, B_m \) to satisfy (B)

Expect \(A_0 = 1 \) because normalizer

\[A_m, B_m = O(\varepsilon) \quad m \geq 1 \]
Expand

\[P \left(R(q) \right) = 0 \]

To first order in \(\epsilon \),

\[J_0(ka) \left[1 + \sum_{p=0}^{\infty} \left(\epsilon \cos pf + \tilde{\epsilon} \sin pf \right) \right] \]

\[+ \sum_{m=1}^{\infty} J_m(ka) \left(A_m \cos mf + B_m \sin mf \right) = 0 \]

To first order in \(\epsilon \),

\(J_0(x) = J_0(x_0) + (x-x_0) J_0'(x_0) \)

\(J_m(ka) \approx J_m(ka) \) because \(A_m \) and \(B_m \) are already zero.

\[J_0(ka) + ka J_0'(ka) \sum_{p=0}^{\infty} \left(\epsilon \cos pf + \tilde{\epsilon} \sin pf \right) \]

\[+ \sum_{m=1}^{\infty} J_m(ka) \left(A_m \cos mf + B_m \sin mf \right) = 0 \]

True for \(\epsilon \) all \(f \) \(\Rightarrow \) Must be true for each power of \(\cos mf \) and \(\sin mf \)

\(m = 0 : \) \[J_0(ka) = 0 \]

\(m = 1 : \) \[J_1(ka) A_1 = 0 \]

\[J_1'(ka) B_1 = 0 \] \(\Rightarrow \)

\[A_1 = 0 \]

\[B_1 = 0 \]

\(m \geq 2 : \) \[\begin{aligned} ka J_0'(ka) \epsilon_m &= -J_m(ka) A_m \\ ka J_0'(ka) \tilde{\epsilon}_m &= -J_m(ka) B_m \end{aligned} \]

\(\text{Note:} \) \[J_0' = -J_1(ka) \]

\[A_m = \epsilon_m \frac{ka J_1(ka)}{J_m(ka)} \quad m \geq 2 \]

\[B_m = \tilde{\epsilon}_m \frac{ka J_1(ka)}{J_m(ka)} \]
From m=0 equation
\[J_0(k\alpha) = 0 \Rightarrow k = \alpha_0, n / a \]
\[\omega_n = \alpha_0 \frac{c}{a} + O(\alpha^2) \]

For nearly circularly symmetric modes, thus \(\omega_n \) is unchanged to order \(\epsilon \) as shape is distorted from a circle.

Lowest mode \(\alpha_0, 1 = 2.4048 \)
\[\frac{\omega_1}{c} = \frac{2.4048}{\alpha} = \frac{2.4048}{\pi^2} = \frac{4.2624}{A^{1/2}} \]

Compare this to a square
\[\frac{\omega_{11}}{c} = \frac{(2\pi^2)^{1/2}}{\alpha} = \frac{(2\pi)^{1/2}}{A^{1/2}} = \frac{4.4449}{A^{1/2}} \]

The frequency for a square is only 4% higher than for a circle.

Note a square is not a small perturbation on a circle. Nevertheless the result is consistent with the frequency being unchanged to order \(\epsilon \).

IF one expands \(\omega_n \) in \(\omega \) to second order in \(\epsilon \)
\[\frac{\Delta \omega_n}{\omega_n} = \frac{1}{2} \sum_{\alpha_0, n} \frac{\alpha_0^2}{\omega_n} \left(1 + \frac{\omega_n J_0'(\alpha_0, n)}{J_0(\alpha_0, n)} \right) \left(\epsilon^2 + \epsilon^2 \right) \geq 0 \]
Since this is a positive function of $\varepsilon^2_1/\varepsilon^2_p$, we conclude

A circular membrane has the lowest frequency of any shaped membrane of a given area.

It is consistent with the square being 4.5% higher than a circle.

Clearly in the limit of a long, very narrow rectangle the frequency will be much higher than for a circle.

![Diagram]

Long rectangle of same area. Need more of curvature in y direction.