Lec 36
Complex Integration

See appendix A of F+W

Show two forms of Green’s func. are equivalent

\[G(x, y) = \sum_{n} \frac{p_n(x) p_n(y)}{w_n^2 - w^2} \]

\[= -u_1(x) u_2(x) / C \]

For a uniform string

\[G_0 = \frac{2}{\alpha L} \sum_{n=1}^{\infty} \frac{\sin(\frac{m \pi x}{L}) \sin(\frac{n \pi y}{L})}{w_n^2 - w^2} \]

\[C_n = \frac{\sin(w_n x/c) \sin(\frac{w_n (L-x)}{c})}{\frac{c}{u} w \sin(\frac{w_n L}{c})} \]

Want to show \(G_0 = G_1 \)

Complex integration \(\Rightarrow \) Go into complex plane

\[Z = x + iy \]

Im Z

Re Z
Analytic Functions

A function is analytic in a region \(\mathcal{D} \) if the derivative exists and is unique (for every point \(z \) in \(\mathcal{D} \))

\[
f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
\]

It should be independent of direction, how \(z \to z_0 \).

An analytic function can be expanded in a Taylor series

\[
f(z) = f(z_0) + (z - z_0) f'(z_0) + (z - z_0)^2 \frac{f''(z_0)}{2} + \cdots
\]

Consider a contour integral around a circle of some power \((z - z_0)^n\)

\[
z - z_0 = \text{Re} i \theta
\]
\[dz = R e^{i\phi} d\phi \]

\[\oint_C F(z) \, dz = \int_0^{2\pi} F(R e^{i\phi}) R e^{i\phi} i R \, d\phi = 0 \]

To go around contour \(C \) \(R \) stays fixed and \(\phi \) goes from 0 to \(2\pi \).

Let \(F = (z - z_0)^n = R^n e^{in\phi} \)

\[\oint_C F(z) \, dz = i R^{n+1} \int_0^{2\pi} e^{in\phi} e^{i\phi} \, d\phi = 0 \]

For any \(n \geq 0 \)

Can expand any analytic function in a power series. All terms in power series integrate to zero.

\[\Rightarrow \oint_C F(z) \, dz = 0 \]

For any analytic function \(f \).

We have proved this for a circular contour \(C \) of any radius \(R \). Cauchy's theorem \[\oint_C F(z) \, dz = 0 \] for any closed contour \(C \).
Nonanalytic functions can have poles

\[F(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \frac{b_1}{z-z_0} + \frac{b_2}{(z-z_0)^2} + \cdots + \frac{b_k}{(z-z_0)^k} \]

If \(b_n = 0 \) for \(n \geq k \) then \(F \) has a \(k \)th order pole at \(z_0 \).

If \(k \to \infty \) \(F \) has an essential singularity at \(z_0 \).

\[\oint_{C} \frac{1}{z^n} dz = i \pi \delta_{n,1} \]

It is only \(\frac{1}{z-z_0} \) that gives a nonzero contribution. This contribution is independent of \(R \).

Important result

\[\oint_{C} F(z) \, dz = 2\pi i \cdot b_1 \]

\(b_1 \) is said to be the residue of \(F \) at \(z_0 = R \).
If a function has multiple poles inside \(C \), then
\[
\oint_C f(z) \, dz = 2\pi i \sum \text{Residues}
\]

Expand \(f \) about each pole location \(z_0 \) and determine each coefficient of \(\frac{1}{z - z_0} \) term.

This is residue. All other coefficients do not matter.

Example

\[
G_0 = \frac{2\pi}{\sin nN} \sum_{n} \frac{\sin \left(\frac{m\pi x}{L} \right) \sin \left(\frac{m\pi y}{L} \right)}{\omega_n^2 - \omega^2}
\]

has poles at \(\omega = \pm \frac{m\pi c}{L} \)

\[
\frac{1}{\omega_n^2 - \omega^2} = \frac{1}{\omega_n + \omega} \frac{1}{\omega_n - \omega}
\]

So, \(\omega \to \omega_n \)

\[
\sum_{n} \frac{1}{\omega_n} \to \frac{1}{2\omega_n} \frac{1}{\omega - \omega_n}
\]

Thus, residue of \(\frac{1}{\omega_n^2 - \omega^2} \) at \(\omega_n \) is \(-\frac{1}{2\omega_n} \)

\[
G_0 \approx \frac{-1}{6L} \sum_{n} \frac{R_n}{\omega_n - \omega_n}
\]

\[
R_n = \frac{1}{\sin \left(\frac{m\pi x}{L} \right) \sin \left(\frac{m\pi y}{L} \right)}
\]
Consider
\[G_1 = \frac{\sin \left(\frac{\omega l}{c} \right) \sin \left(\frac{\omega}{c} l - x_2 \right)}{\frac{\omega}{c} \sin \left(\frac{\omega l}{c} \right)} \]

This also has poles at \(\omega = \pm \frac{n \pi c}{l} \)

\[\sin \left(\frac{\omega l}{c} \right) = (\omega - \omega_n) \frac{l}{c} \cos \left(\frac{n \pi c}{l} \frac{l}{c} \right) \]

\[\frac{1}{\sin \left(\frac{\omega l}{c} \right)} = \left[\frac{1}{\frac{l}{c} (-1)^n} \right] \frac{1}{\omega - \omega_n} \]

Interested in \(\omega \to \omega_n \) so simply evaluate numerator with \(\omega = \omega_n \)

\[G_1 = \frac{\sin \left(\frac{\omega_n l}{c} \right) \sin \left(\frac{n \pi - \omega_n x_2}{c} \right)}{\frac{\omega_n}{c} \frac{l}{c} (-1)^n (\omega - \omega_n)} \]

\[\sin \left(\frac{n \pi - \omega_n x_2}{c} \right) = (-1)^{n+1} \sin \left(\frac{\omega_n x_2}{c} \right) \]

\[G_1 = (-1) \frac{\sin \left(\frac{\omega_n l}{c} \right) \sin \left(\frac{\omega_n x_2}{c} \right)}{\frac{\omega_n}{c} (\omega - \omega_n)} \]

\[= \frac{-1}{l} \frac{\sin \left(\frac{\omega_n l}{c} \right) \sin \left(\frac{\omega_n x_2}{c} \right)}{\omega_n (\omega - \omega_n)} \]

Thus \(G_1 \) has same residue as \(G_0 \) at each pole \(\omega \to \omega_n = \frac{n \pi c}{l} \).