Example: Uniformly magnetized sphere (hard ferromagnet)

Uniform sphere of radius \(a \)

Effective magnetic charge density

\[
\sigma_m = \hat{n} \cdot M = M_0 \cos \theta
\]

\[
\overline{\sigma}_m = \frac{1}{4\pi} \oint_S \frac{n' \cdot M(x') \, d\alpha'}{|x-x'|} \quad \text{inside}
\]

\[
= M_0 a^2 \frac{1}{4\pi} \oint_S \frac{\cos \theta'}{|x-x'|} \, d\alpha'
\]

\[
\int_{|x-x'|} = \int_{r_{11}}^r \frac{r' P_l (\cos \theta)}{r'^2} \, dr'
\]

\[
\cos \phi = \cos \phi' \cos \theta' + \sin \phi' \sin \theta' \cos (\phi-\phi')
\]

Only

\[
S \, d \Omega' \, \cos \theta' \, P_l (\cos \phi')
\]

Only contributes for \(l=1 \)

\[
S \, \cos \theta' \, \cos \theta' = \frac{2}{3}
\]

\[
\overline{\tau}_m = \frac{M_0 a^2}{3} \frac{r}{r^2} \cos \theta \quad r = \min(c, a)
\]
Inside \(\Phi_m = \frac{m_0}{3} r \cos \theta - \frac{M_0}{3} z \)

\[H = -\nabla \Phi_m = -\frac{M_0}{3} \hat{z} = -\hat{M} \]

\[B = \frac{M_0}{3} \left(\hat{H} + \hat{M} \right) = \frac{2}{3} \frac{M_0}{3} \hat{M} \]

Lines of \(B \) are

\[\text{cont.} \]

Lines of \(H \) end on effective surface charge density

Outside \(r = a \)

\[\Phi_m = \frac{1}{3} M_0 a^3 \frac{\cos \theta}{r^2} \]

Potential for a magnetic moment

\[\vec{m} = \frac{4\pi a^3}{3} \hat{M} \]
Magnetized Sphere in External Field: Permanent Magnet.

For uniform sphere:

\[
\vec{B}_\text{in} = \frac{2}{3} \mu_0 \vec{M} \quad \vec{H}_\text{in} = -\frac{1}{3} \vec{M}
\]

Now add external magnetic inductance \(B_0\):

\[
\vec{B}_\text{in} = B_0 + \frac{2}{3} \mu_0 \vec{M} \quad \vec{H}_\text{in} = \frac{1}{\mu_0} B_0 - \frac{1}{3} \vec{M}
\]

IF \(\vec{M}\) is not a permanently magnetized object but is a paramagnetic or diamagnetic substance of permeability \(\mu\)

To find magnitude of \(\vec{M}\) use

\[
\vec{B}_\text{in} = \mu \vec{H}_\text{in}
\]

\[
B_0 + \frac{2}{3} \mu_0 \vec{M} = \frac{\mu}{\mu_0} B_0 - \frac{\mu}{3} \vec{M}
\]

Solve for \(\vec{M}\):

\[
\frac{2}{3} \mu_0 + \frac{\mu}{3} \vec{M} = \left(\frac{\mu - \mu_0}{\mu_0}\right) B_0
\]

\[
\vec{M} = \frac{\mu}{\mu_0 + 2 \mu_0} \left(\frac{\mu - \mu_0}{\mu_0}\right) B_0
\]

Just like polarization \(\vec{P}\) of a dielectric sphere in a uniform electric field:

\[
\vec{P} = 3 \varepsilon_0 \left(\frac{\varepsilon_0 - 1}{\varepsilon_0 + 2}\right) \vec{E}
\]
This does not work because of hysteresis. If we can still eliminate M_{in} from

$$B_{in} = B_0 + \frac{2}{m_0} M_{in} \left(H_{in} + M_{in} - \frac{2}{m_0} B_0 \right)$$

$$H_{in} = \frac{1}{m_0} B_0 - B_0$$

$$B_{in} + 2 \mu_0 H_{in} = 3 B_0$$

hysteresis curve provides another relation

$$F(H_{in}) + 2 \mu_0 H_{in} = 3 B_0$$

Magnetic Shielding.

Consider a spherical shell made of material with permeability μ in an external field B_0.

No currents $J = 0$

$$H = -\nabla \phi_m$$

$$B = \mu H$$

so $\nabla \cdot B = 0$ becomes $\nabla \cdot H = 0$ in different regions.

$$\nabla^2 \phi_m = 0$$

For $r > b$ we have $\phi_m = -H_0 r \cos \theta + \frac{\alpha}{l} \sum_{k=0}^{\infty} \frac{\ell (\cos \theta)^k}{r^{\ell+1}} P_\ell (\cos \theta)$

as $r \to \infty$ this describes uniform B field.

At $r < b$ we have $\phi_m = \frac{\ell}{r}\left(B_0 r^2 + \frac{\alpha}{r^{\ell+1}} \right) P_\ell (\cos \theta)$
\[r < a \quad \sum m = \sum \frac{1}{r} \rho \left(\cos \theta \right) \]

Boundary conditions

\[(B_2 - \theta_1) \cdot n = 0 \]
\[\hat{n} \times (\hat{H}_2 - \hat{H}_1) = \nabla \cdot \vec{H} = 0 \]

In radial direction

\[H_r = -\frac{\partial \vec{A}_m}{\partial \theta} \quad B_r = -\mu \frac{\partial \vec{A}_m}{\partial \theta} \]

\[\mu_0 \frac{\partial \vec{A}_m}{\partial \theta} = \mu \frac{\partial \vec{A}_m}{\partial \theta} \]

also

\[\frac{\partial \vec{A}_m}{\partial \theta} = \frac{\partial \vec{A}_m}{\partial \theta} \]

\[\mu \frac{\partial \vec{A}_m}{\partial \theta} = \mu \frac{\partial \vec{A}_m}{\partial \theta} \]

All coef. except \(k = 1 \) vanish.

\[-H_0 b + \alpha_1 = \beta_1 b + \gamma_1 \]
\[\alpha_1 - \beta_1 \frac{b^2}{b^2} - \gamma_1 = H_0 b^3 \beta_1 \]

etc.
In limit \(\frac{\mu}{\mu_0} \to \infty \)

\[\alpha_1 \to b^3 \frac{H_0}{b^3} \]

and \[-\delta_1 \to \frac{9\mu_0}{2m(1 - \frac{a^3}{b^3})} \frac{H_0}{b^3} \]

So the field inside is much smaller than the field outside going like \(\frac{1}{r} \)

Even for thin shells.

Faraday's Law of Induction

Faraday (1831) observed currents in circuits placed in time varying magnetic fields.

The observed transient current is induced in a circuit if

(a) steady current flowing in adjacent circuit is turned on or off,
(b) adjacent circuit with steady current is moved in or out, and
(c) a permanent magnet is thrust into or out of the circuit.

Changing flux induces an electric field around the circuit which is called the electromotive force \(E \). This causes current to flow according to Ohm's law.

Let circuit be bounded by an open surface \(S \) with normal \(\mathbf{n} \). Magnetic flux linking circuit is

\[\Phi = \int_S \mathbf{B} \cdot \mathbf{n} \, d\mathbf{a} \]
Electromotive force around circuit is

\[E = \oint E' \cdot dl \]

\(E' \) is electric field at line element \(dl \)

\[E = -k \frac{dF}{dt} \]

\[k = 1 \quad \text{V} \cdot \text{C}^{-1} \text{Gaussian units} \]

\[\oint E' \cdot dl + \oint B \cdot n \cdot da = 0 \]

Use Stokes's thm.

\[\oint \left(\nabla \times E + \frac{\partial B}{\partial t} \right) \cdot n \cdot da = 0 \]

True for arbitrary surface \(S \)

\[\nabla \times E + \frac{\partial B}{\partial t} = 0 \]

Time dependent generalization of \(\nabla \times E = 0 \)

Quasi-static Magnetic Fields in Conductors

Eddy currents; Magnetic diffusion

\[\nabla \times H = J, \quad \nabla \cdot B = 0, \quad \nabla \times E + \frac{\partial B}{\partial t} = 0 \]

\(J = \sigma E \quad \text{Ohm's law} \)
\[\mathbf{B} = \nabla \times \mathbf{A} \]
\[\nabla \times (\mathbf{E} + \partial \mathbf{A}/\partial t) = 0 \quad \text{Faraud's law} \]
Therefore, we can define \(\Phi \) so that
\[\mathbf{E} = -\nabla \Phi - \partial \mathbf{A}/\partial t \]

If free charges act small and time-varying \(\mathbf{B} \) is the sole source of electric field, then \(\Phi = 0 \) and \(\nabla \cdot \mathbf{E} = 0 \) and Coulomb gauge \(\nabla \cdot \mathbf{A} = 0 \)

For media of uniform frequency, independent permeability \(\mu \)
\[\nabla \times \mathbf{B} = \mu \mathbf{J} \]
\[\nabla \times \nabla \times \mathbf{A} = \mu \sigma \mathbf{E} = -\mu \sigma \partial \mathbf{A}/\partial t \]
\[-\nabla^2 \mathbf{A} = -\mu \sigma \partial \mathbf{A}/\partial t \]
\[\nabla^2 \Phi = \mu \sigma \partial \mathbf{A}/\partial t \]

Take the first time derivative
\[\nabla^2 \mathbf{E} = \mu \sigma \partial \mathbf{E}/\partial t \]

Can estimate time \(\tau \) for fields to decay
\[\nabla^2 \mathbf{E} = \mathbf{E} \quad \partial \mathbf{E}/\partial t = \mathbf{E}/c \]
\[L = \text{length scale} \quad \frac{L^2}{c} \]

\[\delta \mathbf{E}/\partial t = \mathbf{E}/c \]