Lecture #32 Periodic Table

How do we know the energy of He is -78.975 eV?

Shine UV light on an atom of different frequencies until an electron comes off.

Find $h
\nu = 24.6 \text{ eV}$ for light which emits electrons (ionizes the He atom). Note higher frequency light also emits electrons and they have higher E but lower frequency light does not.

Note this is one of the highest thresholds for ionization of any atom. It only takes 13.6 eV to get an electron off of H.

Once you get one electron off you have a He$^+$ ion. Nucleus has $Z=2$ but only one electron.

You could repeat the exp. with different UV light to find $h\nu$ to kick second e$^-$ off.
and leave a bare nucleus. Since the system is positively charged, expect it to take more energy \(> 24.6 \text{ eV} \).

Note: We know the energy of this type. With only one remaining electron, the system is an H-like ion with \(Z = 2 \).

\[
E = -Z^2 13.6 \text{ eV} = -54.4 \text{ eV}
\]

Thus, need \(hν = 54.4 \text{ eV} \) to get 2nd electron off.

\[
E_{\text{tot}} = -24.6 \text{ eV} - 54.4 \text{ eV} = -79.0 \text{ eV}
\]

Total \(E \) of the atom.

Periodic table

As a crude 1st approx. For atoms heavier than He, continue to ignore e–e repulsion.

Independent particle model

Just put electrons into orbitals \(\psi_{nlm} \) two at a time.
two \leftrightarrow spin triplet state $\frac{1}{2} \uparrow \downarrow - \uparrow \downarrow$

Example: Li ($Z = 3$)

Configuration: $(1s)^2 2s$

Notation 19th Century spectroscopy

$l = 0 \leftrightarrow s$ state (sharp)

1 \leftrightarrow p$ state (principal)

2 \leftrightarrow d$ state (differential)

3 \leftrightarrow f$ state (fine)

4 \leftrightarrow g$ state

5 \leftrightarrow h$ state

Energy in H atom only depends on n not l.

$\Psi(\vec{r}_1, \vec{r}_2, \vec{r}_3) = \psi_{100}(r_1) \psi_{100}(r_2) \psi_{200}(r_3) |\text{spin}\rangle$

$|\text{spin}\rangle = \frac{1}{\sqrt{2}} (|\uparrow \downarrow - \downarrow \uparrow\rangle \uparrow$ for example 1, 2, 3 \text{ particle}

3rd electron in Li sees a screened Coulomb pot.
\[\rho_{\text{total}}(r) = +3eS(\vec{r}) + \rho_{\text{is core}}(r) \]

Charge density

Nucleus

Electron cloud from two is elections

\[P_{\text{is core}} = -2e |\psi_{\text{loc}}(r)|^2 \]

\[V(r) \]

Solve 5.

Equation in pot. \(V(r) \)

Note \(V(r) \) found from \(P_{\text{total}}(r) \)

by solving Maxwell eq.

Since \(V(r) \) goes to zero fast, then \(1/r \) lifts degeneracy.

Be tween different \(l \) states.
Put it in pot

15

25

35

3d

2d

3d

3d

3d

States: High or lower

Low barriers: states barrier keeps small away from market

1/3 Attention: 5
Thus Li is \((1s)^2\) 2s
rather than \((1s)^2\) 2p
Keep going: Carbon for example \(Z = 6\)
configuration: \((1s)^2\) \((2s)^2\) \((2p)^2\)
There are three 2p states \(M = -1, 0, 1\)
thus can put at most 6 electrons
3 \(\times\) 2 spins in 2p orbitals
Ne \((Z = 10)\): \((1s)^2\) \((2s)^2\) \((2p)^6\)

Shell structure: Closed shells have high ionization thresholds and lead to almost inert noble gases
Examples: He, Ne, Ar
Configuration of Ar: Ne \((Z = 10)\) \((3s)^2\) \((3p)^6\)
\(Z = 18\)

In contrast, atoms with only one electron outside of a closed shell have very low ionization thresholds and are very reactive. Li \((Z = 3)\), Na \((Z = 11)\) configuration \((1s)^2\) \((2s)^2\) \((2p)^6\) \((3s)^1\)
K \((Z = 19)\) configuration \((Ar)\) \((4s)^1\)
Identical Particles Problem 5.3

\[\psi _{+}(\mathbf{r}, \mathbf{r'}) = A \left[\psi _{a}(\mathbf{r}, \mathbf{r'}) \psi ^{*}_{b}(\mathbf{r}, \mathbf{r'}) \pm \psi _{b}(\mathbf{r}, \mathbf{r'}) \psi ^{*}_{a}(\mathbf{r}, \mathbf{r'}) \right] \]

What is \(A \)?

Assume \(\psi _{a}, \psi _{b} \) are normalized and orthogonal.

\[\int d^3r \, \psi _{a}(\mathbf{r})^\dagger \psi _{a}(\mathbf{r}) = 1 \quad \int d^3r \, |\psi _{b}(\mathbf{r})|^2 = 1 \]

Assume \(a \neq b \)

\[\int d^3r \, d^3r' \, \psi _{a}(\mathbf{r})^\dagger \psi _{b}(\mathbf{r}) = 0 \]

\[\int d^3r \, d^3r' \, \left[\psi _{a}(\mathbf{r})^\dagger \psi _{b}(\mathbf{r}) + \psi _{b}(\mathbf{r})^\dagger \psi _{a}(\mathbf{r}) \right] = \Delta \]

\[\int d^3r \, d^3r' \left[\psi _{a}(\mathbf{r})^\dagger \psi _{b}(\mathbf{r}) \psi _{b}(\mathbf{r})^\dagger \psi _{a}(\mathbf{r}) + \psi _{b}(\mathbf{r})^\dagger \psi _{a}(\mathbf{r}) \psi _{a}(\mathbf{r})^\dagger \psi _{b}(\mathbf{r}) \right] = 1 \]

\[= A^* A \left[\int d^3r \, d^3r' \, |\psi _{a}(\mathbf{r})|^2 |\psi _{b}(\mathbf{r})|^2 \right] \]

\[+ \int d^3r \, d^3r' \, \psi _{a}(\mathbf{r})^\dagger \psi _{b}(\mathbf{r}) \psi _{b}(\mathbf{r})^\dagger \psi _{a}(\mathbf{r}) + \psi _{b}(\mathbf{r})^\dagger \psi _{a}(\mathbf{r}) \psi _{a}(\mathbf{r})^\dagger \psi _{b}(\mathbf{r}) \]

\[+ \int d^3r \, d^3r' \left[\psi _{a}(\mathbf{r})^\dagger \psi _{b}(\mathbf{r}) \psi _{b}(\mathbf{r})^\dagger \psi _{a}(\mathbf{r}) \right] \]

\[= A^* A \left[1 + 0 + 0 + 1 \right] = 1 \]
\[A = \frac{1}{\sqrt{2}} \]

IF \(a = b \) then cross terms are identical to diagonal terms.

\[A^2 A \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} = 1 \]

Only \(+\) sign is relevant \(-\) gives identity. \(= 0 \)

\[A = \frac{1}{2} \]

\[\Psi_{+}(r_1, r_2) = \frac{1}{2} \left[\Psi_{a_1}(r_1) \Psi_{a_2}(r_2) + \Psi_{a_2}(r_1) \Psi_{a_1}(r_2) \right] \]

\[= \Psi_{a_1}(r_1) \Psi_{a_2}(r_2) \]

Wave func all ready symmetric