Lecture #39 Review

Quantum mechanics describes the motion of small objects. A measurement must disturb a system to some level.

\[\Delta p \Delta x \geq \frac{\hbar}{2} \]

Since \(p = mV \) we can determine both the velocity and position of massive objects

\[\Delta V \Delta x \geq \frac{\hbar}{2m} \rightarrow 0 \]

Thus QM reduces to classical mech. for massive objects. Correspondence principle in limit of large quantum number. QM system corresponds with any classical. Example 1 dim HO

Ground state (pure QM)

Largen prob. dist-close to classical
Postulates of QM

1) The state of a system is represented by a normalized vector, $|\Psi\rangle$ (wave function).

2) Observable quantities $Q(x, p, t)$ are represented by Hermitian operators \hat{Q}. The expectation value of Q is $\langle Q \rangle = \langle \Psi | \hat{Q} | \Psi \rangle$.

3) A measurement of the observable Q on a system in the state $|\Psi\rangle$ is certain to yield λ if $|\Psi\rangle$ is an eigenvector of \hat{Q} with eigenvalue λ, $\hat{Q} |\Psi\rangle = \lambda |\Psi\rangle$.

3') A measurement of Q in the state $|\Psi\rangle$ is certain to get one of the eigenvalues of \hat{Q}. The prob. of getting λ is equal to the absolute square of the λ component of $|\Psi\rangle$.

Eigenvectors $\hat{Q} |\Psi\rangle = \lambda |\Psi\rangle$

Completeness can expand any $|\Psi\rangle$

$|\Psi\rangle = \sum \langle x | |\Psi\rangle |x\rangle$

Expansion coef. $\langle x | = \langle x | |\Psi\rangle |x\rangle$
Orthogonality

\[\langle \chi_i | \chi_j \rangle = \delta_{ij} \]

Prob. of getting \(\lambda \)

\[P_\lambda = |c_\lambda|^2 \]

Expectation value

\[\langle \hat{\mathcal{Q}} \rangle = \langle \hat{\mathcal{Q}} \rvert \Psi \rangle \]

\[= \sum \mathcal{P}_\lambda \lambda \]

Generalized Uncert Principle

\[\sigma_A = \sqrt{\langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2} \quad \text{Variance} \]

\[\sigma_A = \text{Standard deviation} \]

\[\sigma_A \sigma_B \geq \frac{1}{2} \sqrt{\langle [\hat{A}, \hat{B}] \rangle} \]

\[[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} \quad \text{Commutator} \]