Lec. 22 Radial Equation

\[- \frac{\hbar^2}{2m} \nabla^2 Y(\rho, \phi) + V(\rho) Y(\rho, \phi) = E Y(\rho, \phi) \]

Angular eq.

\[\sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{\partial^2 Y}{\partial \phi^2} = -l(l+1) \sin^2 \theta Y \]

\(l(l+1) \) = Separation constant, indep. of \(\rho, \phi, \theta \)

\(Y(\rho, \phi) = A \frac{p^m}{r} (\cos \theta) e^{im\phi} \)

\[p_l^m(x) = (1 - x^2)^{l/2} \frac{(d^m}{dx^m}) [P_l(x)] \]

\[P_l(x) = \frac{1 - x^2}{2^l l! [(d/dx)^l (x^2 - 1)^l}] \]

Note

\[p_l^m \propto (\frac{d}{dx})^l (x^2 - 1)^l \]

Thus:

\[p_{lm} = 0 \] for \(m > l \)

\[\Rightarrow 2l+1 \] possible \(m \) values between \(-l, \ldots, l \)

\[-l \leq m \leq l \]

Normalize

\[\int_0^\infty \frac{d^3r}{4\pi} = \int_0^\infty r^2 \sin \theta d\theta d\phi d\rho = 1 \]

\[\int_0^\infty \frac{d\rho}{\rho} \frac{1}{r} r^2 d\theta d\phi = 1 \]

\[\int_0^{2\pi} \frac{d\phi}{2\pi} \int_0^\pi \sin \theta d\theta \int_0^\infty r^2 dr \frac{|Y|^2}{4\pi} = 1 \]

\[Y_{lm}(\rho, \phi) = \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!}} e^{im\phi} \frac{p_l^m}{r} (\cos \theta) \]
\[k = \text{phase} = \left\{ \begin{array}{ll} \frac{m}{\ell} & m \geq 0 \\ \frac{1}{m} & m < 0 \end{array} \right. \]

Spherical Harmonics are orthogonal
\[\int_0^{2\pi} \int_0^\pi \sin \theta \, d\theta \, d\phi \, y_\ell^m(\cos \theta, \phi) y_{\ell'}^{m'} = \delta_{\ell \ell'} \delta_{m m'} \]

\(\ell = 0, 1, 2, \ldots \)
\(-\ell \leq m \leq \ell \)

Radial Equation
\[\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} R \right) + \frac{l(l+1)}{2m^2} \frac{1}{r} R + V(r) R = \lambda R \]

Separation constant

Let \(U = r \frac{d}{dr} R \)
\[R = \frac{R}{r} \]
\[R' = \frac{U}{r} - \frac{U}{r^2} \]

\[\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} U \right) = \frac{U''}{r} \]
\[-\frac{\hbar^2}{2m} \frac{d^2}{dr^2} U + \left[V(r) + \frac{l(l+1)}{2mr^2} \right] U = \lambda U \]

\[\Psi(r, \theta, \phi) = \frac{U(r)}{r} y_\ell^m(\theta, \phi) \]

\[V_{\text{eff}} = V(r) + \frac{\hbar^2 l(l+1)}{2mr^2} \]

\[\int_0^\infty \rho(r) \, dr = 1 \quad \text{(Centrifugal term)} \]
Only one angular wave function for all central pot.

Example: \(Y_\ell^m(\theta, \phi) = \frac{1}{\sqrt{4\pi}} \int_0^\pi \sin \theta \, d\theta \int_0^{2\pi} \, d\phi \frac{1}{\sqrt{4\pi}} \frac{1}{\sqrt{4\pi}} = 1 \)

Need to specify radial form of pot.

Example: infinite spherical well
\(V(r) = \begin{cases} 0 & r \leq a \\ \infty & r > a \end{cases} \)
\(\psi_{nr} = 0 \quad r > a \)

Inside \(V=0 \)
\(\frac{d^2 \psi}{dr^2} = \left(\frac{\ell(\ell+1)}{r^2} - k^2 \right) \psi \)
\(k = \sqrt{2mE} \alpha \)

Solutions: spherical Bessel and spherical Neumann functions
\(\psi(r) = A_J \, j_\ell(kr) + B_N \, n_\ell(kr) \)

\(j_\ell(x) = (-1)^\ell \frac{1}{\sqrt{\pi} x^\ell} \left(\frac{\sin x}{x} \right) \)
\(n_\ell(x) = -(-1)^\ell \frac{1}{\sqrt{\pi} x^\ell} \left(\frac{\cos x}{x} \right) \)
$$j_0(x) = \frac{\sin x}{x}$$

$$j_1 = -x \int \frac{\sin x}{x^2}$$

$$n_0(x) = -\frac{\cos x}{x}$$

Note \(\frac{\cos x}{x} \to \infty \) as \(x \to 0 \)

but \(\frac{\sin x}{x} \to 1 \)

Therefore \(j_0(kr) \) is singular as \(r \to 0 \)

Choose \(B = 0 \)

$$U = Ar f j_0(kr)$$

Boundary condition at \(r = a \)

$$U(a) = 0 = j_0(ka)$$

$$k = \frac{1}{a} \beta_{nl}$$

$$\beta_{nl}$$ is \(n \)th zero of \(l \)th spherical Bessel function

$$E_{nl} = \frac{h^2}{2m^2} \beta_{nl}^2$$

indep. of \(m \)

$$N_{nlm}(r, \theta, \phi) = A_{nl} j_{l}(\beta_{nl}r/a) y_{lm}^{m}(\theta, \phi)$$

And from normalization
Finite spherical well (Prob. 4.9)

\[V = \begin{cases} 0 & r \geq a \\ -V_0 & r < a \end{cases} \]

Look for \(n=0 \) solutions (lowest energy)

\[\frac{d^2u}{dr^2} = -k^2u \quad r < a \]

\[k = \sqrt{\frac{2m(E + V_0)}{h}} \]

Looks just like section 2.6 Finite Square Well outside \(r > a \)

\[\frac{d^2u}{dr^2} = k^2u \quad r > a \]

bound state \(E < 0 \) but \(-V_0 < E < 0 \)

Only difference in 3D is b.c. at \(r = 0 \)

\[\psi = 0 \quad \psi_r \rightarrow \psi_r \] at \[r = 0 \]

So \(\psi \rightarrow 0 \) as \(r \rightarrow 0 \)

\[\psi = A \sin kr \quad r < a \]

\[B e^{-kr} \quad r > a \]

match \(\psi \) and \(\psi' \) at \(r = a \)

\[\frac{\psi'}{\psi} = \frac{\psi'}{A \sin kr} \bigg|_{r=a} = -e^{-kr} \]
\[k \cot ka = -j \]

In the limit of very weakly bound state \(E \to 0 \) from below,

\[\cot ka \approx 0 \quad \text{or} \quad ka = \frac{\pi}{2} \]

\[\frac{\hbar^2}{2m} = E + V_0 = V_0 \]

\[V_0 = \frac{k^2}{2ma^2} \left(\frac{\pi^2}{4} \right) = \frac{\hbar^2 \pi^2}{8ma^2} \]

If \(V_0 \) is less than this \(\Rightarrow \) no bound state in 3 dim.

Example: Proton + neutron has one bound state (deuteron \(E \approx 0 \))

While \(p + n \) for two protons or two neutrons is slightly weak and disintegrates, or de neutron does not exist.

Note in 1 dim always a bound state \(\Rightarrow \) any attractive pot.

If \(p + p \) would bind to form \(2 \) He, or \(16 \) billion years.