Lecture 6 Stationary States

Last time

To every observable \(\rightarrow \) operator

Example \(\hat{X} = x \rightarrow \hat{P} = -i\hbar \frac{\partial}{\partial x} \)

Expectation value \(\langle 0 \rangle = \int_{-\infty}^{\infty} \psi^* \psi \, dx \)

For Gaussian wave function \(\Delta x \Delta p = \hbar \)

In general \(\psi(x,t) \) depends on both time and position. To start solving \(\psi \), first look for special solutions

\[\psi_i(x,t) = \psi_i(x) F(t) \]

which are simple products. Note capital \(\psi \) is function of \(x,t \), lower case \(\psi \) is function of \(x \)

Later we will find most general solution as superposition

\[\psi(x,t) = \sum a_i \psi_i(x,t) \]

\(a_i = \) expansion coeff.

For now assume \(\star \) and drop label:

\[-i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V(x) \psi \]

\[-i\hbar \psi(x) \frac{\partial F}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V(x) \psi(x) F(t) \]
\[
- \frac{i}{\hbar} \frac{1}{f(t)} \frac{\partial^2 \Psi(x,t)}{\partial t^2} - \frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x) \Psi(x,t) = E \Psi(x,t)
\]

Only true if both sides equal a constant \(E \) independent of both \(x,t \)

\[
- \frac{i}{\hbar} \frac{dF}{dt} = E F(t)
\]

Time independent Schrödinger equation

\[
\frac{dF}{dt} = - \frac{iE}{\hbar} F(t)
\]

\[F(t) = C e^{-\frac{iEt}{\hbar}} \]

Choose \(C = 1 \) can absorb it into \(\Psi \)

\[F = e^{-\frac{iEt}{\hbar}} \]

\[\Psi(x,t) = \Psi(x) e^{-\frac{iEt}{\hbar}} \]

Note \(F \Psi F^* = \Psi \) so above is called a stationary state. Wave function only has a trivial time dependence. Expectation values of time independent operators will be
Can write time independent S. eq.

\[H = \frac{\hat{p}^2}{2m} + \hat{V} \]

with \(\hat{p} = -i\hbar \frac{d}{dx} \)

\[\hat{V} = V(x) \]

and \(\hat{H} \psi(x) = E \psi(x) \)

It is called Hamiltonian \(\hat{H} = \hat{\mathbf{T}} + \hat{\mathbf{V}} \)

\[\langle \hat{\mathbf{H}} \rangle = \int \psi^* \hat{\mathbf{H}} \psi \ dx = \int \psi^* \hat{\mathbf{T}} \psi \ dx + \int \psi^* \hat{\mathbf{V}} \psi \ dx = \int \psi^* \hat{\mathbf{H}} \psi \ dx = E \]

\[\langle \hat{\mathbf{H}}^2 \rangle = \int \psi^* \hat{\mathbf{H}}^2 \psi \ dx = \int \psi^* \hat{\mathbf{T}}^2 \psi \ dx + \int \psi^* \hat{\mathbf{V}}^2 \psi \ dx = \int \psi^* \hat{\mathbf{H}}^2 \psi \ dx = E^2 \]

\[\Delta E = \int \langle \hat{\mathbf{H}}^2 \rangle - \langle \hat{\mathbf{H}} \rangle^2 \ dx = E^2 - E^2 = 0 \]

No uncertainty in energy. State is eigenstate of energy.

To solve time independent S. eq.

Need to specify \(V(x) \)

Example Infinite Square Well

\[V(x) = \begin{cases} 0 & 0 \leq x \leq a \\ \infty & \text{otherwise} \end{cases} \]
If \(\Psi \neq 0 \) outside the well

\(< \hat{V} > \) and \(< \hat{H} > \) will be \(\infty \)

So finite energy solutions go to zero outside the well

\[\Psi(x) = 0 \quad \text{when} \quad V = \infty \]

Boundary conditions

(a) Wave Function is always continuous

(b) \(\frac{\partial \Psi}{\partial x} \) is continuous except where

Thus \(\Psi(x) \) must go to zero as \(x \to 0 \) or \(x \to a \)

S - eq inside well \(V = 0 \)

\[-\frac{1}{2m} \frac{d^2 \Psi}{dx^2} = E \Psi \]

\[\frac{d^2 \Psi}{dx^2} = -k^2 \Psi \]

\(k = \) wave vector \[= \sqrt{\frac{2mE}{h}} \]

Above is equation for simple harmonic motion

\[\Psi = A \sin kx + B \cos kx \]

Most general solution \(A, B \) are undetermined constants.
Boundary conditions:

1. \(\psi(0) = 0 \Rightarrow B = 0 \)
 \[\psi(x) = A \sin kx \]

2. \(\psi(a) = 0 = \sin ka \)

Note: \(A = 0 \) makes \(\psi \equiv 0 \) and cannot normalize.
\[\int_0^a \psi^2 \, dx = 1 \]

\[k = \frac{n\pi}{a} \quad n = 1, 2, 3 \]

\(n = 0 \) gives \(\psi \equiv 0 \) again.

\[E_n = \frac{k^2}{2m} = \frac{n^2\pi^2 k^2}{2ma^2} \]

This is a fundamental way QM works. Imposing boundary conditions forces energy to be quantized.

Particles in a box can only have discrete allowed energies.

Normalize:
\[\int_0^a \psi^2 \, dx = \int_0^a |A|^2 \sin^2(kx) \, dx = \frac{|A|^2 a}{2} = 1 \]

\[|A|^2 = \frac{2}{a} \]

\[\psi_n = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi x}{a} \right) \]